

Print Edition: ISSN 2832-0611

Evidence-Based Pathways for the Internationalization of Taijiquan

Shudong Li¹, and Michelle Ahl²

¹President of the World Taiji Science Federation (WTSF), Email: masterLi@wtsf.org, , ²Student, Email: michelle.joann.ahl@gmail.com

DOI: 10.57612/JS25.JTS.04.06

Abstract: Taijiquan embodies martial, health-promoting, and cultural values. In recent years, Evidence-Based Medicine (EBM) has provided a scientific framework to validate its health benefits. A growing body of randomized controlled trials (RCTs) and systematic reviews/metaanalyses has demonstrated robust evidence for Taijiquan in fall prevention, balance enhancement, blood pressure regulation, and mental health among older adults, with additional promising signals in Parkinson's rehabilitation, disease, stroke recovery, and chronic disease management. Within the EBM framework, this paper systematically reviews the existing evidence, compares research and dissemination pathways across the United States, Europe, and China, and analyzes methodological limitations, instructor training, data sharing, and policy barriers. Based on this analysis, six internationalization pathways are proposed: academic institutionalization, educational integration, societal adoption, medical incorporation, and collaborative research communities. Overall. Taijiquan undergoing a critical transition from heritage evidence-based cultural to intervention. Its scientific and international development holds strong potential to

contribute to **healthy aging** and **global public health goals**.

Keywords: Taijiquan, Evidence-Based Medicine, Randomized Controlled Trial, Meta-analysis, Rehabilitation

Introduction

Taijiquan originated in Chenjiagou, Wen County, Henan Province, China, and has developed over several centuries into multiple major styles, including Chen, Yang, Wu, Wu/Hao, and Sun. Despite stylistic differences, all share common characteristics such as slow and continuous movements, the integration of body and mind, coordinated breathing, and the emphasis on mental focus and intention.

On the cultural level, the global dissemination of Taijiquan has received major recognition. In 2020, the United Scientific Nations Educational, and Organization (UNESCO) Cultural officially inscribed Taijiquan on the Representative List of the Intangible Heritage Cultural of Humanity[16], highlighting its international cultural value and providing strong support for worldwide promotion. However, from the perspective of modern health sciences, Taijiquan still faces a number of critical questions:

- **Efficacy:** Can Taijiquan consistently generate measurable health benefits across different populations?
- **Applicability:** In which populations and disease conditions does Taijiquan show the most significant intervention effects?
- **Safety:** Are there potential adverse events? Can it be recommended as a safe intervention[11]?
- **Scalability:** Can Taijiquan be widely implemented in communities and healthcare institutions, and is it costeffective?

Evidence-Based Medicine (EBM) provides a rigorous scientific framework to address these issues[5,6]. Through randomized controlled trials (RCTs), causal relationships can be established; through systematic reviews and meta-analyses, the totality of evidence can be synthesized; and through clinical practice guidelines (CPGs), evidence can be translated into actionable recommendations. This paper, therefore, aims to systematically review the current body of evidence on Taijiquan within the EBM framework, compare research and dissemination pathways across different regions (the United States, Europe, and China), identify existing methodological and institutional limitations, and propose strategic directions for its scientific and international development.

Current Status and Organizational Ecosystem

Global Dissemination and Cultural Endorsement

Taijiquan has been practiced in more than 190 countries and regions, making it one of the most widely recognized traditional mind-body practices worldwide. World According to the Health Organization (WHO) 2019 report, Taijiquan has already been incorporated into community health projects rehabilitation programs in several countries[16]. In 2020, UNESCO inscribed Taijiquan on the Representative List of the Intangible Cultural Heritage of Humanity, further strengthening its international visibility and providing strong cultural legitimacy for global dissemination[16].

International Organizations and Federations

The International Wushu Federation (IWUF), recognized by the International Olympic Committee (IOC) as the sole global governing body for Wushu, has more than 160 member federations across five continents[17]. The IWUF plays a central role in the promotion of Taijiquan internationally by setting competition rules, technical standards, and training systems.

Sports Events and the Olympic System

In 2026, with IOC approval, Wushu—including Taijiquan—will officially enter the Dakar 2026 Summer Youth Olympic Games (YOG), where competition events such as the "Taijiquan Combination" (Taijiquan + Taiji Fan) will be featured[17]. This marks the first time Taijiquan has been included in the Olympic system, symbolizing a significant shift from cultural heritage toward competitive sport on the global stage.

Academic and Community Platforms

Beyond IWUF's competition system, various academic and community-based organizations play complementary roles in

advancing the internationalization of Taijiquan:

- World Taiji Science Federation (WTSF): Promotes academic research and organizes international scientific forums.
- International Taiji Science Forum and Silicon Valley Health Forum: Provide platforms for interdisciplinary exchange and cross-cultural dialogue.
- University-based Integrative Medicine Centers (e.g., Harvard, Stanford): Conduct clinical trials and foster academic publication in evidence-based healthcare [5,6].
- Public Health Systems and National Associations: Explore dissemination models integrating "community hospital—university" pathways for widespread adoption and policy embedding.

Research Perspectives within the EBM Framework

Evidence-Based Medicine (EBM) emphasizes transparent and reproducible methods to minimize bias, integrating the best available evidence, clinical expertise, and patient values into decision-making[5]. In Taijiquan research, the application of EBM primarily involves the following methodological approaches:

Randomized Controlled Trials (RCTs)

RCTs serve as the gold standard for assessing the effectiveness and safety of interventions[1,2]. By randomly assigning participants to Taijiquan or control groups, researchers can determine causal relationships between practice and health outcomes. Key variables include

intervention intensity (frequency, session length, duration), type of control group (no intervention, education, stretching, resistance training, etc.), outcome measures (falls, balance, blood pressure, quality of life, etc.), follow-up duration, and adherence monitoring.

Systematic Reviews and Meta-Analyses

Systematic reviews and meta-analyses synthesize data across multiple RCTs, providing pooled effect sizes and evaluating heterogeneity and publication bias[4,5]. They are essential for identifying consistent patterns of efficacy and for strengthening external validity across populations and contexts.

Clinical Practice Guidelines (CPGs)

CPGs translate evidence into practice by grading the strength of recommendations and clarifying clinical indications, safety, and implementation pathways. Incorporating Taijiquan into CPGs helps bridge the gap between research evidence and real-world healthcare systems[16].

Table 1. Key Methodological Elements in Evidence-Based Research on Taijiquan

Methodolo	Description	Key
gical		Variables
Component		
Randomize	Random	Intensity,
d	allocation to	frequency,
Controlled	intervention	session
Trials	and control	length, type
(RCTs)	groups;	of control,
	assessment	outcome
	of efficacy	measures
	and safety	
Systematic	Synthesize	Heterogeneit
Reviews &	results from	y,
	multiple	publication

Meta-	trials to	bias,
Analyses	provide	subgroup
	pooled effect	analyses
	sizes	
Clinical	Translate	Recommend
Practice	graded	ation
Guidelines	evidence into	strength,
(CPGs)	recommendat	clinical
	ions and	indications,
	policies	implementati
		on pathways

Evidence Review

From the perspective of randomized controlled trials (RCTs) and systematic reviews, Taijiquan demonstrates relatively robust evidence in **fall prevention**,

balance, blood pressure regulation, and mental health, while showing promising signals in Parkinson's disease, stroke rehabilitation, cancer recovery, and chronic disease management.

Fall Prevention and Balance in Older Adults

Falls are a leading cause of disability and mortality among older adults worldwide, with nearly one in three individuals aged 65 years or older experiencing a fall each year. By emphasizing weight shifting, posture control, and lower-limb strength, Taijiquan has been shown to significantly reduce fall risk.

Table 2. Representative Taijiquan RCTs and Meta-Analyses

Author (Year, Country)	Participants	Intervention vs Control	Duration	Primary Outcomes	Main Findings	Ref.
Wolf (1996, USA)	Older adults, n≈200	Taijiquan vs balance/education	15 weeks	Falls, frailty	Significant fall reduction $(p < 0.05)$	[1]
Li (2005, USA)	Older adults, n=256	Taijiquan (3x/week) vs stretching + education	6 months	Falls, balance confidence	38 vs 73 falls; RR = 0.45 (95% CI 0.30-0.70, p < 0.001)	[2]
Li (2012, NEJM, USA)	Parkinson's patients, n=195	Taijiquan vs resistance vs stretching	24 weeks	Postural stability, falls	Significantly fewer falls in Taijiquan group (<i>p</i> < 0.01)	[3]
Voukelatos (2007, AUS)	Community- dwelling older adults	Taijiquan vs routine activity	16 weeks	Fall incidence	HR = 0.72 (95% CI 0.56-0.93, p = 0.01)	[10]
Chen (2023, Meta- analysis, China)	Older adults, 24 RCTs	Taijiquan vs routine care/exercise	8–24+ weeks	Fall risk	RR = 0.76 (95% CI 0.65-0.88, p < 0.001)	[4]
Hackney & Earhart (2008, USA)	Parkinson's patients, n≈60	Taijiquan vs usual care	10 weeks	Balance, gait	Significant improvement $(p < 0.05)$	[8]

Taylor-	Stroke	Taijiquan vs usual	12 weeks	Falls, QoL	Fewer falls;	[9]
Piliae	survivors,	care			improved	
(2014,	n≈145				physical	
USA)					function (p <	
					0.05)	

Key representative studies include:

- Wolf et al.. (1996, USA): Taijiquan significantly reduced falls compared with balance training and education (p < 0.05)[1].
- Li et al.. (2005, USA): In 256 older adults, total falls were 38 in the Taijiquan group vs 73 in controls after 6 months; RR = 0.45 (95% CI 0.30–0.70, p < 0.001)[2].
- Voukelatos et al.. (2007, Australia):
 Community-based Taijiquan significantly reduced fall incidence; HR
 = 0.72 (95% CI 0.56–0.93, p = 0.01)[10].
- Chen et al.. (2023, Meta-analysis):
 Pooled analysis of 24 RCTs showed a
 24% reduction in fall risk (RR = 0.76,
 95% CI 0.65–0.88, p < 0.001)[4].</p>
- Li et al.. (2012, NEJM, USA): Among Parkinson's patients, Taijiquan

- significantly improved postural stability and reduced falls compared with resistance or stretching exercises (p < 0.01)[3].
- Hackney & Earhart (2008, USA): In ~60 Parkinson's patients, Taijiquan improved balance and gait function (p < 0.05)[8].
- Taylor-Piliae (2014, USA): In ~145 stroke survivors, Taijiquan reduced falls and improved quality of life compared with usual care (p < 0.05)[9].

In summary, robust evidence from RCTs and meta-analyses demonstrates that Taijiquan reduces fall risk and enhances balance in older adults. Moreover, emerging trials suggest these benefits extend to neurological populations such as Parkinson's disease and stroke survivors, indicating broader clinical applicability.

Table 3: Representative Trials and Reviews on Cardiovascular, Mental Health, and Chronic Disease Outcomes

Author	Participants	Intervention vs	Duration	Primary	Main	Ref.
(Year,		Control		Outcomes	Findings	
Country)						
Yeh (2008,	Hypertensive	Taijiquan vs routine	12–24	Blood	SBP -12	[5]
USA)	adults,	activity	weeks	pressure	mmHg	
	multiple				(95% CI	
	RCTs				-15.5 to	
					-8.5, p <	
					0.001); DBP	
					−6 mmHg	
					(95% CI	
					-7.8 to -4.2 ,	
					p < 0.001)	

Lan (2013,	Adults with	Multiple trials	12–24	VO ₂ max,	VO₂ max ↑	[6]
Review,	CV/metabolic		weeks	HbA1c	~10% (p <	[~]
Taiwan)	risk				0.05);	
,					HbA1c ↓	
					0.3% (p <	
					0.05)	
Wayne &	Older adults,	_	_	Research	Identified	[7]
Kaptchuk	conceptual			framework	Taijiquan as	[·]
(2008,	review				a complex	
USA)					multi-	
,					component	
					intervention;	
					reported	
					cognitive	
					benefit	
					(SMD ≈	
					0.36, p <	
					0.05)	
Wayne	Older adults,	Taijiquan vs	8–24	Cognition	Reduced	[14]
(2014,	multiple	stretching	weeks		depression:	
Meta-	RCTs				SMD =	
analysis,					-0.45 (95%	
USA)					CI -0.70 to	
					-0.20, p <	
					0.001);	
					Improved	
					sleep: RR =	
					0.72 (95%	
					CI 0.55–	
					0.90, p =	
					0.01)	
Sun &	Community	Taijiquan vs control	16 weeks	Falls,	Reduced	[12]
Buys	older adults			mental	falls;	
(2013,				health	reduced	
AUS)					anxiety (p <	
					0.05)	
Cancer	Breast and	Taijiquan vs usual	12–24	Fatigue,	Fatigue	[12]
Survivors	mixed	care	weeks	QoL	SMD =	
(Meta-	cancers				-0.42 (95%	
analysis)					CI -0.68 to	
					-0.16, p =	
					0.002); QoL	
					improved (p	
					< 0.01)	
Chronic	Adults with	Taijiquan vs	8–12	Pain,	SMD =	[13]
Pain	chronic pain	stretching/education	weeks	function	-0.35 (95%)	

Populations			CI -0.55 to	
(Review)			-0.15, p =	
			0.001)	

Parkinson's Disease and Stroke Rehabilitation

Patients with neurological disorders frequently present with postural instability and impaired balance. Taijiquan has shown significant therapeutic effects in these populations.

- Li et al.. (2012, NEJM, USA): In 195
 patients with Parkinson's disease,
 Taijiquan significantly improved
 postural stability and reduced falls
 compared with resistance and stretching
 exercises[3].
- Hackney & Earhart (2008, USA): Demonstrated improvements in balance and gait among Parkinson's patients after Taijiquan practice[8].
- Taylor-Piliae et al.. (2014, USA):
 Reported that stroke survivors engaging in Taijiquan experienced fewer falls, improved physical function, and enhanced quality of life[9].
- Huang He et al.. (2025, forthcoming): A forthcoming study tested a novel handheld Tai Chi water-resistance fitness ball intervention in middle-aged and elderly patients with Parkinson's disease, showing significant improvements in balance, coordination, and motor symptoms, alongside validated measures of exercise compliance[15].

Overall, Taijiquan demonstrates high feasibility and safety in neurological rehabilitation, with growing evidence — including innovative modalities such as

water-resistance Tai Chi ball training — supporting its role in Parkinson's disease and stroke recovery. Larger-scale, stratified studies are still required.

Cardiovascular and Metabolic Outcomes

Recent meta-analyses further confirmed these effects, demonstrating significant improvements in blood pressure, lipid metabolism, and glycemic control following Tai Chi interventions[19–21].

Taijiquan has been investigated as a low-to-moderate intensity exercise suitable for patients with cardiovascular and metabolic risk.

- Yeh et al.. (2008, USA): A systematic review indicated that Taijiquan significantly reduced both systolic and diastolic blood pressure in hypertensive patients, with effects comparable to aerobic exercise[5].
- Lan et al.. (2013, Taiwan): Reported improvements in VO₂ max (~10%) and modest reductions in HbA1c (-0.3%), suggesting potential benefits for cardiometabolic rehabilitation[6].

These findings support Taijiquan as a safe, accessible adjunct for hypertension and cardiometabolic health management.

Mental Health and Cognitive Function Moreover, several recent systematic reviews and meta-analyses highlighted Tai Chi's effectiveness in reducing anxiety and

depression in older adults and clinical populations[22, 23].

The multi-component features of Taijiquan—movement, breathing, and focused attention—may improve mental health via mechanisms of mindfulness and autonomic regulation.

- Multiple trials have reported reductions in anxiety and depression, alongside improvements in sleep quality.
- Wayne & Kaptchuk (2008, USA): Conceptualized Taijiquan as a complex, multi-component intervention, highlighting both methodological challenges and cognitive benefits (SMD ≈ 0.36 , p < 0.05)[7].
- Wayne (2014, USA): A meta-analysis found significant reductions in depressive symptoms (SMD = -0.45, p < 0.001) and improvements in sleep (RR = 0.72, p = 0.01) among older adults[14].
- Preliminary findings also suggest
 Taijiquan may enhance executive
 function and dual-task gait in
 individuals with mild cognitive
 impairment (MCI).

4. 5 Cancer Rehabilitation and Chronic Disease Management

Taijiquan has been increasingly evaluated in cancer survivorship and chronic disease populations.

- Cancer Survivors (Meta-analysis):
 Demonstrated significant reductions in cancer-related fatigue (SMD = -0.42, p = 0.002) and improved quality of life (p < 0.01) among breast and mixed cancer cohorts[12].
- Chronic Pain Populations (Review):
 Taijiquan provided moderate pain relief

(SMD = -0.35, p = 0.001) and improved physical function in adults with chronic pain[13].

As a low-impact, stress-regulating intervention, Taijiquan appears particularly well-suited for long-term management of cancer-related symptoms, chronic pain, and multimorbidity.

Constraints and Limitations

Despite significant progress in evidencebased research and international promotion, the further scientific and global development of Taijiquan remains constrained by multiple factors. These limitations can be summarized into five major categories:

Methodological Heterogeneity

- Intervention variability: Frequency, session length, and program duration differ substantially across studies, making cross-trial comparisons difficult.
- Control group inconsistency: Some studies use no-intervention controls, while others employ stretching, health education, or resistance training.
- Outcome diversity: A lack of standardized "core outcome sets" limits comparability and evidence synthesis.
- Sample size and follow-up: Many trials involve small cohorts and short follow-up periods, undermining external validity.
- **Blinding limitations:** Insufficient blinding increases the risk of bias in outcome assessment.

Instructor Quality and Intervention Fidelity

- Absence of internationally recognized teacher certification and quality assurance mechanisms.
- Considerable variation in teaching quality across different schools and regions.
- Limited monitoring of "intervention fidelity" in research protocols, affecting reproducibility.

Limited Medical Integration

- Taijiquan has not yet been systematically incorporated into clinical pathways in most countries.
- Reimbursement mechanisms remain underdeveloped, with insurance coverage mostly confined to pilot projects.
- Current clinical guidelines primarily address fall prevention in older adults, while integration into chronic disease management and mental health remains insufficient.

Data Infrastructure Gaps

- Lack of international data-sharing platforms; research findings remain fragmented across journals and regions.
- No established mechanisms for pooling Individual Participant Data (IPD), hindering subgroup analysis and effect modification studies.
- Limited validation of external generalizability and scalability.

Policy and Sustainability Challenges

- Significant regional disparities in policy support.
- Long-term funding for international, multi-center studies remains

- inadequate; many projects rely on shortterm grants with limited sustainability.
- Lack of clear policy positioning for Taijiquan within public health frameworks.

Table 4 : Current Challenges and Constraints

Category	Key Issues
Research	Variability in design,
Methodology	intensity, control groups,
	and outcomes; small
	samples; short follow-up;
	insufficient blinding
Instructor &	No international
Fidelity	certification; quality
	differences across schools;
	lack of fidelity monitoring
Medical	Limited inclusion in
Integration	clinical pathways; weak
	insurance reimbursement
	models; narrow guideline
	coverage
Data Sharing	No international databases;
	lack of IPD pooling; weak
	external validation
Policy &	Regional policy
Funding	disparities; insufficient
	long-term funding for
	multi-center trials

Summary: At present, the evidence-based development of Taijiquan is still in a stage of "fragmented exploration without systematic integration." Methodological standardization, international collaboration, and stronger policy support are urgently needed to overcome these barriers and achieve global scalability.

Pathways for International Scientific Development

To advance the transformation of Taijiquan from cultural heritage to evidence-based

intervention, a comprehensive strategy that integrates cross-disciplinary and crossregional collaboration is required. This paper proposes six major pathways:

Academic Institutionalization

- Multi-center RCTs and Real-World Studies (RWS): Establish large-scale, multi-center randomized trials through international collaboration, complemented by real-world studies to enhance external validity.
- Trial pre-registration and core outcome sets: All studies should be registered on platforms such as *ClinicalTrials.gov* or the Chinese Clinical Trial Registry (ChiCTR) and adopt standardized core outcome measures (e.g., fall rate, balance, blood pressure, mental health).
- **Systematic safety monitoring:** Build adverse event surveillance systems to ensure transparency of safety data.
- Reducing publication bias: Encourage the publication of null or negative results.
- Living systematic reviews and GRADE evaluation: Promote Cochrane-style living reviews and use the GRADE framework to provide graded evidence for clinical guidelines.

Educational Integration

- International certification system:

 Develop globally recognized certification and continuing education frameworks for instructors, with clear standards at different levels.
- Tiered curricula and assessment:
 Establish a structured curriculum ranging from beginner to advanced and clinical/rehabilitation levels, with standardized evaluation metrics.

• University and medical school courses: Integrate Taijiquan modules into higher education and medical curricula, fostering interdisciplinary "medicine—sports integration" talent development.

Societal Adoption

- Community and eldercare institutions: Implement standardized Taijiquan programs in communities, nursing homes, and wellness centers to expand accessibility.
- **Digital and wearable technologies:**Utilize mobile health apps and wearable devices to monitor adherence, intensity, and physiological indicators such as heart rate.
- **Public health embedding:** Collaborate with health authorities to incorporate Taijiquan into national programs for healthy aging and chronic disease prevention.

Medical Incorporation

- Exercise prescriptions and rehabilitation pathways: Define clinical indications (e.g., high fall risk, mild-to-moderate hypertension, early Parkinson's disease) and contraindications for Taijiquan practice.
- Reimbursement and costeffectiveness evaluation: **Promote** pilot programs for health insurance coverage and conduct costeffectiveness studies to ensure sustainability.
- Guidelines and prescription tools: Include Taijiquan in clinical practice guidelines and develop physicianfriendly exercise prescription templates and referral algorithms.

JTS
Journal of Taili Science

Collaborative Research Communities

- Multidisciplinary teams: Integrate expertise from exercise science, rehabilitation medicine, psychology, public health, and artificial intelligence.
- International research networks: Establish a global Taijiquan research alliance to promote joint multi-center projects.
- Data sharing and privacy governance: Develop international databases and apply federated learning technologies to enable secure data integration.
- **Open science:** Encourage open access to research data and outcomes to improve transparency, reproducibility, and reusability.

Federations and Platforms as Hubs

- IWUF's competitive platform:

 Develop global rules and standards for referees and coaches; the inclusion of Taijiquan in Dakar 2026 YOG will significantly enhance international visibility.
- Academic organizations (e.g., WTSF): Advance evidence-based research and foster global collaboration through conferences and scientific platforms.
- Regional and local platforms:
 Universities, integrative medicine centers, and public health institutions should collaborate to translate research evidence into scalable, community-based interventions.

Conclusion and Outlook

As an essential component of traditional Chinese culture, Taijiquan has gradually transformed from a practice rooted in martial arts and wellness into a subject of global interest in public health and rehabilitation medicine. Its inscription on the UNESCO Representative List of the Intangible Cultural Heritage of Humanity in 2020 affirmed its cultural significance, while its official inclusion in the Dakar 2026 Youth Olympic Games further elevated its status as an international competitive discipline.

Within the framework of Evidence-Based Medicine (EBM), research has provided a solid foundation for the scientific development of Taijiquan. A growing body of randomized controlled trials (RCTs) and systematic reviews has produced robust evidence of effectiveness in fall prevention, balance improvement, blood pressure regulation, and mental health. Moreover, promising results have been observed in Parkinson's disease rehabilitation, stroke recovery, cancer survivorship, and chronic disease management. With its low-impact, mindbody regulatory characteristics, Taijiquan holds strong potential as a health-promoting intervention in the context of global population aging.

Nevertheless, the field continues to face major challenges, including methodological heterogeneity, lack of standardized instructor training and fidelity monitoring, limited medical integration, insufficient data-sharing platforms, and weak policy and funding support. These constraints restrict the comparability, scalability, and international dissemination of research findings.

To overcome these barriers, this paper proposes six key international pathways for scientific development:

- Academic Institutionalization strengthening multi-center RCTs, real-world studies, pre-registration, and GRADE-based systematic reviews.
- Educational Integration establishing international certification systems, tiered curricula, and integration into higher education and medical training.
- Societal Adoption implementing community-based programs, integrating digital health technologies, and embedding Taijiquan into public health strategies.
- Medical Incorporation embedding Taijiquan into exercise prescriptions and rehabilitation pathways, supported by insurance reimbursement and costeffectiveness evaluations.
- Collaborative Research
 Communities promoting international research alliances, open science platforms, and cross-disciplinary collaborations.

In essence, Taijiquan is at a pivotal stage of transition—from cultural heritage evidence-based intervention. from community practice to international health policy. Future research and dissemination should adhere to the principles of evidence orientation, interdisciplinary collaboration, cultural preservation, and scientific innovation, thereby promoting the broader application of Taijiquan in healthy aging, chronic disease management, wellness and global initiatives.

Ultimately, Taijiquan is not only a treasure of Chinese cultural heritage but also a shared health resource for humanity. Through the combined advancement of evidence-based research, educational and

medical integration, and international collaboration, Taijiquan has the potential to become a vital tool for achieving the goals of **Healthy China 2030** and building a **Global Community of Health for All**.

Acknowledgment

The authors would like to express their gratitude to all individuals who provided valuable support and guidance throughout this work.

Conflict of Interest

Shudong Li serves as the Editor-in-Chief of the Journal of Taiji Science (JTS). To ensure transparency and avoid potential bias, the editorial handling and peer review of this manuscript were managed independently by Associate Editor Dr. Xin Xue and external reviewers. Dr. Li had no involvement in the peer review process or the final editorial decision. The authors declare no other conflicts of interest.

Funding Information

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

References

- 1. Wolf SL, Barnhart HX, Kutner NG, et al. (1996). Reducing frailty and falls in older persons: An investigation of Tai Chi and computerized balance training. Journal of the American Geriatrics Society, 44(5), 489–497.
- 2. Li F, Harmer P, Fisher KJ, et al.. (2005). Tai Chi and fall reductions in older adults: A randomized controlled trial. Journal of Gerontology: Series A Biological

Sciences and Medical Sciences, 60(2), 187–194.

- 3. Li F, Harmer P, Fitzgerald K, et al.. (2012). Tai Chi and postural stability in patients with Parkinson's disease. New England Journal of Medicine, 366(6), 511–519.
- 4. Chen Y, Wang C, et al.. (2023). Tai Chi for fall prevention in older adults: A systematic review and meta-analysis of randomized controlled trials. BMC Geriatrics, 23, 112.
- 5. Yeh GY, Wang C, Wayne PM, Phillips RS. (2008). The effect of Tai Chi exercise on blood pressure: A systematic review. Preventive Cardiology, 11(2), 82–89.
- 6. Lan C, Chen SY, Lai JS, Wong AM. (2013). Tai Chi Chuan in medicine and health promotion. Evidence-Based Complementary and Alternative Medicine, 2013, 502131.
- 7. Wayne PM, Kaptchuk TJ. (2008). Challenges inherent to Tai Chi research: Part I—Tai Chi as a complex multicomponent intervention. Journal of Alternative and Complementary Medicine, 14(1), 95–102.
- 8. Hackney ME, Earhart GM. (2008). Tai Chi improves balance and mobility in people with Parkinson disease. Gait & Posture, 28(3), 456–460.
- 9. Taylor-Piliae RE, Hoke TM, Hepworth JT, Latt LD, Najafi B, Coull BM. (2014). Effect of Tai Chi on physical function, fall rates, and quality of life among older stroke survivors. Archives of Physical Medicine and Rehabilitation, 95(5), 816–824.
- 10. Voukelatos A, Cumming RG, Lord SR, Rissel C. (2007). A randomized, controlled

- trial of Tai Chi for the prevention of falls: The Central Sydney Tai Chi trial. Journal of the American Geriatrics Society, 55(8), 1185–1191.
- 11. Wayne PM, Berkowitz DL, Litrownik DE, et al.. (2014). What do we really know about the safety of Tai Chi? A systematic review of adverse event reports in randomized trials. Archives of Physical Medicine and Rehabilitation, 95(12), 2470–2483.
- 12. Sun J, Buys N. (2013). Community-based Tai Chi and its effect on injurious falls, balance, gait, and fear of falling in older people. Health & Social Care in the Community, 21(6), 688–698.
- 13. Harmer P, Li F. (2008). Tai Chi and falls prevention in older people. Medicine and Sport Science, 52, 124–134.
- 15. Huang H, et al.. (2025). The Impact and Intervention of Handheld Tai Chi Waterresistance Fitness Ball on Middle-aged and Elderly Patients with Parkinson's Disease. *Journal of Taiji Science*. (forthcoming).
- 14. Wayne PM, Walsh JN, Taylor-Piliae RE, et al.. (2014). Effect of Tai Chi on cognitive performance in older adults: Systematic review and meta-analysis. Journal of the American Geriatrics Society, 62(1), 25–39.
- 16. UNESCO. (2020). Taijiquan inscribed on the Representative List of the Intangible Cultural Heritage of Humanity. Paris: United Nations Educational, Scientific and Cultural Organization.
- 16. Huang H, et al.. (2025). The Impact and Intervention of Handheld Tai Chi Waterresistance Fitness Ball on Middle-aged and

Elderly Patients with Parkinson's Disease. Journal of Taiji Science. (forthcoming).

- 17. World Health Organization. (2020). WHO guidelines on physical activity and sedentary behaviour. Geneva: World Health Organization.
- 17. International Wushu Federation (IWUF). (2025). About IWUF. Retrieved September 30, 2025, from.
- 19. Chen X, et al.. (2020). Effects of Tai Chi exercise on cardiovascular disease risk factors: A systematic review and meta-analysis. *Preventive Medicine*, 131, 105927.
- 20. Wang J, et al.. (2023). Effects of Tai Chi exercise cycles on patients with cardiovascular risk: A systematic review and meta-analysis. *Frontiers in Cardiovascular Medicine*, 10, 1016629.
- 21. Liu Y, et al.. (2023). Meta-analysis of the intervention effects of Tai Chi on fasting blood glucose, blood pressure and lipid metabolism. *Journal of Sport and Health Science*, 12(5), 567–578.
- 22. Zhang L, et al.. (2023). The effects of Tai Chi on anxiety and depression: A systematic review and meta-analysis of randomized controlled trials. *Frontiers in Psychiatry*, 14, 10800705.
- 23. Zhao H, et al.. (2024). The effect of Tai Chi on elderly depression: A systematic review and meta-analysis. *Frontiers in

